

Altered pain processing in patients with type I and II diabetes

Eva Sierra-Silvestre,^{a,b} Mari Somerville,^c Leanne Bisset,^{a,b} Michel W. Coppieters^b a: Physiotherapy, School of Allied Health Sciences, Griffith University, Australia.; b: The Hopkins Centre, Menzies Health Institute, Queensland, Griffith University, Australia; c: Nutrition and Dietetics, School of Allied Health Sciences, Griffith University, Australia.

IntroductionResultsDiabetes and diabetic neuropathies (DSPN)
affect small diameter nerve fibre function
responsible for thermal, electrical, and pain
perception.Pain thresholdgreatergreatergreatergreatergreatergreater

Quantitative sensory testing (QST) can assess small diameter nerve fibre function.

AIM

To summarise the evidence from QST on altered pain threshold and pain modulation in patients with diabetes with and without DSPN (both painful and non-painful).

Methods

Pain modulation

Protocol registered on PROSPERO Only one paper retrieved on pain modulation and (CRD42018088173) and reported according to temporal summation guidelines (PRISMA)

Databases

MEDLINE, CINAHL, EMBASE, Cochrane Library, SPORTDiscus, Web of Science and PEDro

Flow diagram

n = 6,798 (3,839 after duplicates removed)

Conclusions

Patients with diabetes without DSPN already show loss of small-diameter nerve function

Loss of small-diameter nerve function is progressive across the diabetes groups

Screening + eligibility (2 researchers)

Pain modulation mechanisms in diabetes requires further investigation

The Hopkins Centre Research for Rehabilitation and Resilience

